\qquad

C. U. SHAH UNIVERSITY
 Summer Examination-2022

Subject Name : Linear Algebra

Subject Code : 5SC01LIA1
Semester: 1

Date: 21/04/2022

Branch: M.Sc. (Mathematics)

Time: 11:00 To 02:00
Marks: 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the Following questions.

a. Define: External Direct Sum.
b. Define: Dual Space.
c. Define:Minimal Polynomial of T.
d. True/False : $W^{00}=W$.

Attempt all questions
Then prove that $\operatorname{HOM}(V, W)$ is of dimension $m n$ over F.
b. If $v_{1}, v_{2}, \ldots, v_{n} \in V$ then prove that either they are linearly independent or
some v_{k} is a linear combination of preceding one's $v_{1}, v_{2}, \ldots \ldots \ldots . v_{k-1}$
c. If $v_{1}, v_{2}, \ldots \ldots \ldots v_{n} \in V$ are linearly independent then prove that every element in their linear span has a unique representation in the form
$\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots \ldots \ldots+\lambda_{n} v_{n}$ with $\lambda_{i} \in F$.

OR

Q-2 Attempt all questions
a. Let V be a finite dimensional vector space over F and W be subspace of V. Show that \widehat{W} is isomorphic to \widehat{V} / W° and

$$
\operatorname{dim} W^{\circ}=\operatorname{dim} V-\operatorname{dim} W
$$

b. If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of V over F and if $w_{1}, w_{2}, \ldots \ldots \ldots, w_{m}$ are linearly independent over F then prove that $m \leq n$.

Q-3 Attempt all questions.
a. If \mathcal{A} is an algebra over F with unit element then prove that \mathcal{A} is isomorphic to a subalgebra of $A(V)$ for some vector space V over F.
b. Let V be a finite dimensional over F then prove that $T \in A(V)$ is invertible
if and only if the constant term in minimal polynomial for T is nonzero.
c. Let V be finite dimensional over F and $T \in A(V)$. Show that the number of characteristic roots of T is atmost n^{2}.

OR

Q-6 Attempt all questions
a. Let $A, B \in M_{n}(F)$, prove that $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$
b. Prove that the determinant of an upper triangular matrix is the product of its entries on the main diagonal.

OR

Q-6 Attempt all questions
a. State and prove Cramer's rule.
b. Prove that interchanging the two row of matrix changes the sign of its determinant.
c. If A is regular then show that $\operatorname{det} A \neq 0$.

