C. U. SHAH UNIVERSITY Summer Examination-2022

Subject Name : Linear Algebra

Subject Code : 5SC)1LIA1	Branch: M.Sc. (Mathematics)	
Semester: 1	Date: 21/04/2022	Time: 11:00 To 02:00	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions.	[07]
	a.	Define: External Direct Sum.	(02)
	b.	Define: Dual Space.	(02)
	c.	Define:Minimal Polynomial of T.	(02)
	d.	True/False : $W^{00} = W$.	(01)
Q-2		Attempt all questions	[14]
	a.	Let V and W be vector space over F of dimension m and n respectively. Then prove that $HOM(V, W)$ is of dimension mn over F	(07)
	b.	If $v_1, v_2,, v_n \in V$ then prove that either they are linearly independent or some v_k is a linear combination of preceding one's $v_1, v_2,, v_{k-1}$	(04)
	c.	If $v_1, v_2, \dots, v_n \in V$ are linearly independent then prove that every element in their linear span has a unique representation in the form $\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$ with $\lambda_i \in F$.	(03)
0-2		Attempt all questions	[14]
x -	a.	Let V be a finite dimensional vector space over F and W be subspace of	(09)
		V. Show that \widehat{W} is isomorphic to $\widehat{V}/_{W^{\circ}}$ and	
	b.	$\dim W^{\circ} = \dim V - \dim W.$ If $\{v_1, v_2,, v_n\}$ is a basis of <i>V</i> over <i>F</i> and if $w_1, w_2,, w_m$ are linearly independent over <i>F</i> then prove that $m \le n$.	(05)
Q-3		Attempt all questions.	[14]
	a.	If \mathcal{A} is an algebra over F with unit element then prove that \mathcal{A} is isomorphic to a subalgebra of $A(V)$ for some vector space V over F .	(06)

b. Let *V* be a finite dimensional over *F* then prove that $T \in A(V)$ is invertible (05)

if and only if the constant term in minimal polynomial for *T* is nonzero. c. Let *V* be finite dimensional over *F* and $T \in A(V)$. Show that the number of characteristic roots of *T* is atmost n^2 . (03)

OR

Q-3		Attempt all questions	[14]
	a.	Let V be a finite dimensional vector space over F then prove that	(05)
		$T \in A(V)$ is regular if and only if T is one-one.	
	b.	Let <i>V</i> be finite dimensional over <i>F</i> and $T \in A(V)$. If $\lambda_1, \lambda_2, \dots, \lambda_k$ in	(05)
		F are distinct roots of T and v_1, v_2, \dots, v_k are characteristic vector of	
		T corresponding to $\lambda_1, \lambda_2, \dots, \lambda_k$ respectively. Then prove that	
		v_1, v_2, \dots, v_k are linearly independent.	
	c.	Let <i>V</i> be finite dimensional over <i>F</i> and $S, T \in A(V)$ and <i>S</i> be regular, then	(04)
		prove that $\lambda \in F$ is chatracteristic root of <i>T</i> if and only if it is a	
		characteristic root of $S^{-1}TS$.	
		SECTION – II	
Q-4		Attempt the Following questions.	[07]
	a	Prove or disprove $:tr(A + B) = tr(A) + tr(B)$ where $A, B \in M_n(F)$.	(02)
	b	$\begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$	(02)
		Let $A = \begin{bmatrix} 1 & 4 & 0 \end{bmatrix}$ find det 4 State the result you use	
		Let $M = \begin{bmatrix} 0 & 0 & 3 & 0 \end{bmatrix}$, find det M . State the result you use.	
	C.	Find the symmetric matrix associated with the quadratic form	(02)
		$9x_1^2 - x_2^2 + 4x_3^2 + 6x_1x_2 - 8x_1x_3 + 2x_2x_3.$	
	d	Define: Index of Nilpotence.	(01)
Q-5		Attempt all questions	[14]
-	a.	Let V be a finite dimensional vector space over F and $T \in A(V)$. If all the	(07)
		characteristic roots of T are in F then there is a basis of V with respect to	
		which the matrix of T is upper triangular.	
	b.	Let V be a finite dimensional vector space over F and $T \in A(V)$ be	(05)
		nilpotent with index of nilpotence n_1 . Then show that there is a basis of V	
		in which the matrix of T is of the form	
		$(M_{n_1} \cdots 0)$	
		$\begin{pmatrix} 0 & \cdots & M_{n_k} \end{pmatrix}$	
		Where $n_1 > n_2 > \dots > n_k$ and dim $V = n_1 + n_2 + \dots + n_k$.	
	c.	Let V be a finite dimensional vector space over F. If $T \in A(V)$ is right	(02)
		invertible then show that <i>T</i> is invertible.	· · ·
		OR	
Q-5		Attempt all questions	[14]
-	a.	Let V be a finite dimensional vector space over F and $T \in A(V)$ be	(06)
		nilpotent then prove that the invariants of T are unique.	
	b.	Let V be a finite dimensional vector space over F and $T \in A(V)$ be	(05)
		nilpotent. Then show that $\alpha_0 + \alpha_1 T + \dots + \alpha_m T^m$ is invertible if	
		$\alpha_0 \neq 0$, where $\alpha_0, \alpha_1, \dots, \alpha_m \in F$.	
	c.	Show that two similar matrices have same trace.	(03)
Q-6		Attempt all questions	[14]
•		· ·	Page 7 of 2
		A DAY DAY DAY DAY DAY DAY DAY DAY DAY DA	1 age 2 01 3

 a. Let A, B ∈ M_n(F), prove that det(AB) = det A · det B b. Prove that the determinant of an upper triangular matrix is the provise entries on the main diagonal. 		Let $A, B \in M_n(F)$, prove that $\det(AB) = \det A \cdot \det B$ Prove that the determinant of an upper triangular matrix is the product of its entries on the main diagonal.	(07) (07)
		OR	
Q-6		Attempt all questions	[14]
-	a.	State and prove Cramer's rule.	(07)
	b.	Prove that interchanging the two row of matrix changes the sign of its determinant.	(04)
	c.	If <i>A</i> is regular then show that $\det A \neq 0$.	(03)

